Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J King Saud Univ Sci ; 35(6): 102758, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37351185

RESUMO

In this investigation a single crystal of (4-oxo-piperidinium ethylene acetal) trioxonitrate (4-OPEAN) was synthesized by modifying the mechanism of gradual evaporation at ambient temperature. The operational groupings are found in the complex material in the elaborate substance, according to the infrared spectrum. Single crystal X-ray diffraction suggests, (4-OPEAN) with the chemical formula (C7H12NO2)NO3 belongs to the orthorhombic space group Pnma and is centrosymmetric in three dimensions with the aforementioned network configurations, a = 11.7185(8) Å, b = 7.2729(6) Å, c = 11.0163(8) Å, Z = 4, V = 938.89(12) Å3, R = 0.0725 and wR = 0.1762. Many N-H…O and C-H…O hydrogen bridges, both bifurcated and non-bifurcated, link the 4-oxo-piperidinium ethylene acetal cations to the trigonal (NO3-) anions. Molecular geometry and optimal parameters of (4-OPEAN) have been determined via DFT computations at the theory-level B3LYP/6-311 ++ G(d, p), these have been contrasted with the X-ray data already available. Hirshfeld surface analysis has made it possible for the visualization and quantification of relationships between molecules in the crystal composition. Quantum theory atoms in molecules, electron location function, decreased density gradient, and localized orbital locator research have all been used to explore non-covalent interactions in crystal structure. In order to pinpoint both the nucleophilic and electrophilic locations that support hydrogen bond formation, the molecule electrostatic potential was determined. The greatest and lowest energies of occupied and unfilled molecular orbitals, together with additional derived atomic characteristics, show the material to be extremely stable and hard. According to a molecular docking study, 4-OPEAN may exhibit inhibiting effects on the 6Y84 and 7EJY virus proteins from corona (COVID-19).

2.
Molecules ; 28(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36985641

RESUMO

In this paper, both methods (DFT and HF) were used in a theoretical investigation of 3-bromo-2-Hydroxypyridine (3-Br-2HyP) molecules where the molecular structures of the title compound have been optimized. Molecular electrostatic potential (MEP) was computed using the B3LYP/6-311++G(d,p) level of theory. The time-dependent density functional theory (TD-DFT) approach was used to simulate the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) on the one hand to achieve the frontier orbital gap and on the other hand to calculate the UV-visible spectrum of the compound in gas phase and for different solvents. In addition, electronic localization function and Fukui functions were carried out. Intermolecular interactions were discussed by the topological AIM (atoms in molecules) approach. The thermodynamic functions have been reported with the help of spectroscopic data using statistical methods revealing the correlations between these functions and temperature. To describe the non-covalent interactions, the reduced density gradient (RDG) analysis is performed. To study the biological activity of the compound of the molecule, molecular docking studies were executed on the active sites of BRD2 inhibitors and to explore the hydrogen bond interaction, minimum binding energies with targeted receptors such as PDB ID: 5IBN, 3U5K, 6CD5 were calculated.

3.
Polymers (Basel) ; 15(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36904360

RESUMO

Cellulose sulfates are important biologically active substances with a wide range of useful properties. The development of new methods for the production of cellulose sulfates is an urgent task. In this work, we investigated ion-exchange resins as catalysts for the sulfation of cellulose with sulfamic acid. It has been shown that water-insoluble sulfated reaction products are formed in high yield in the presence of anion exchangers, while water-soluble products are formed in the presence of cation exchangers. The most effective catalyst is Amberlite IR 120. According to gel permeation chromatography, it was shown that the samples sulfated in the presence of the catalysts KU-2-8, Purolit s390 plus, and AN-31 SO42- underwent the greatest degradation. The molecular weight destribution profiles of these samples are noticeably shifted to the left towards low-molecular-weight compounds with an increase in fractions in the regions Mw ~2.100 g/mol and ~3.500 g/mol, indicating the growth of microcrystalline cellulose depolymerization products. The introduction of a sulfate group into the cellulose molecule is confirmed using FTIR spectroscopy by the appearance of absorption bands at 1245-1252 cm-1 and 800-809 cm-1, which correspond to the vibrations of the sulfate group. According to X-ray diffraction data, amorphization of the crystalline structure of cellulose is observed during sulfation. Thermal analysis has shown that with an increase in the content of sulfate groups in cellulose derivatives, thermal stability decreases.

4.
Molecules ; 28(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36985656

RESUMO

Essential oils are volatile oil-like liquids with a characteristic strong smell and taste. They are formed in plants and are then extracted. Essential oils have extremely strong physiological and pharmacological properties, which are used in the medicine, cosmetics, and food industries. In this study, the molecules caryophyllene oxide, ß-pinene, 1,8-cineol, α-cubebene, and ß-caryophyllene, which are the molecules with the highest contents in the essential oil of the plant mentioned in the title, were selected and theoretical calculations describing their interactions with water were performed. Because oil-water mixtures are very important in biology and industry and are ubiquitous in nature, quantum chemical calculations for binary mixtures of water with caryophyllene oxide, ß-pinene, 1,8-cineol, α-cubebene, and ß-caryophyllene were performed using the density functional theory (DFT)/B3LYP method with a basis of 6-31 G (d, p). Molecular structures, HOMO-LUMO energies, electronic properties, reactivity (ELF, LOL, and Fukui), and NCI-RDG and molecular electrostatic potential (MEP) on surfaces of the main components of Phlomis bruguieri Desf. essential oil were calculated and described.

5.
Molecules ; 28(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838921

RESUMO

In this paper, a novel hybrid material, entitled histaminium bis(trioxonitrate), with the general chemical formula (C5H11N3)(NO3)2, denoted by HTN was presented. Single-crystal X-ray diffraction was used to determine the structural characteristics of this compound after it was made using a slow evaporation method at room temperature. This compound was elaborated and crystallized to the monoclinic system with space group P21/c, and the lattice parameters obtained were: a = 10.4807 (16)Å, b = 11.8747 (15)Å, c = 16.194 (2)Å, ß = 95.095 (6)°, V = 2007.4 (5)Å3 and Z = 8. The title compound's atomic structure couldbe modeled as a three-dimensional network. Organic cations and nitrate anions were connected via N-H...O and C-H...O hydrogen bonds in the HTN structure. The intermolecular interactions responsible for the formation of crystal packing were evaluated using Hirshfeld surfaces and two-dimensional fingerprint plots. The compound's infrared spectrum, which ranged from 4000 to 400 cm-1, confirmed the presence of the principal bands attributed to the internal modes of the organic cation and nitrate anions. Additionally, spectrofluorimetry and the ultraviolet-visible spectrum was used to investigate this compound. DFT calculations were used to evaluate the composition and properties of HTN. The energy gap, chemical reactivity and crystal stability of HTN were quantified by performing HOMO-LUMO frontier orbitals analysis. Topological analysis (AIM), Reduced Density Gradient (RDG), molecular electrostatic potential surface (MEPS) and Mulliken population were processed to determine the types of non-covalent interactions, atomic charges and molecular polarity in detail.


Assuntos
Nitratos , Teoria Quântica , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
6.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677528

RESUMO

The physicochemical properties of binary systems are of great importance for the application of the latter. We report on the investigation of an ammonium sulfamate-urea binary system with different component ratios using a combination of experimental (FTIR, XRD, TGA/DSC, and melting point) and theoretical (DFT, QTAIM, ELF, RDG, ADMP, etc.) techniques. It is shown that, at a temperature of 100 °C, the system under study remains thermally and chemically stable for up to 30 min. It was established using X-ray diffraction analysis that the heating time barely affects the X-ray characteristics of the system. Data on the aggregate states in specified temperature ranges were obtained with thermal analysis and determination of the melting point. The structures of the ammonium sulfamate-urea system with different component ratios were optimized within the density functional theory. The atom-centered density matrix propagation calculation of the ammonium sulfamate-urea system with different component ratios was performed at temperatures of 100, 300, and 500 K. Regardless of the component ratio, a regular increase in the potential energy variation (curve amplitude) with an increase in temperature from 100 to 500 K was found.

7.
Polymers (Basel) ; 14(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365515

RESUMO

In this study, hemicelluloses of aspen wood (Pópulus trémula) were obtained by oxidative delignification in an acetic acid-water-hydrogen peroxide medium at temperatures of 70-100 °C and a process time of 1-4 h. The maximum polysaccharide yield of up to 9.68 wt% was reported. The composition and structure of the hemicelluloses were studied using a complex of physicochemical methods: gas and gel permeation chromatography, Fourier-transform infrared spectroscopy, 2D nuclear magnetic resonance spectroscopy, and thermogravimetric analysis. The xylose, mannose, galactose, and glucose monomer units were identified in the hemicelluloses by gas chromatography. The weight average molecular weight Mw of the products determined by gel permeation chromatography was found to range within 8932-33,142 g/mol. The reported Fourier-transform spectra of the hemicelluloses contain all the bands characteristic of heteropolysaccharides; a weak lignin absorption signal in the spectra at 1500-1510 cm-1 is attributed to a minor content of phenolic fragments in the structure of the obtained hemicelluloses. The use of thermogravimetric analysis established that the hemicelluloses isolated from aspen wood are resistant against heating to temperatures of up to 90-100 °C and, upon further heating up to 400 °C, start destructing at an increasing rate. The antioxidant activity of the hemicelluloses was examined using the compounds that mimic free radicals (1,1-diphenyl-2-picrylhydrazyl) and hydroxyl radicals (salicylic acid). It was found that the activity of all polysaccharides in neutralizing DPPH and hydroxyl radicals is lower than the absorption capacity of vitamin C at all the tested concentrations (0.5, 2, and 5 mg/mL) and attains 81.7 and 82.9%, respectively.

8.
Molecules ; 27(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36431965

RESUMO

Imidazole derivatives have found wide application in organic and medicinal chemistry. In particular, benzimidazoles have proven biological activity as antiviral, antimicrobial, and antitumor agents. In this work, we experimentally and theoretically investigated N-Butyl-1H-benzimidazole. It has been shown that the presence of a butyl substituent in the N position does not significantly affect the conjugation and structural organization of benzimidazole. The optimized molecular parameters were performed by the DFT/B3LYP method with 6-311++G(d,p) basis set. This level of theory shows excellent concurrence with the experimental data. The non-covalent interactions that existed within our compound N-Butyl-1H-benzimidazole were also analyzed by the AIM, RDG, ELF, and LOL topological methods. The color shades of the ELF and LOL maps confirm the presence of bonding and non-bonding electrons in N-Butyl-1H-benzimidazole. From DFT calculations, various methods such as molecular electrostatic potential (MEP), Fukui functions, Mulliken atomic charges, and frontier molecular orbital (HOMO-LUMO) were characterized. Furthermore, UV-Vis absorption and natural bond orbital (NBO) analysis were calculated. It is shown that the experimental and theoretical spectra of N-Butyl-1H-benzimidazole have a peak at 248 nm; in addition, the experimental spectrum has a peak near 295 nm. The NBO method shows that the delocalization of the aσ-electron from σ (C1-C2) is distributed into antibonding σ* (C1-C6), σ* (C1-N26), and σ* (C6-H11), which leads to stabilization energies of 4.63, 0.86, and 2.42 KJ/mol, respectively. Spectroscopic investigations of N-Butyl-1H-benzimidazole were carried out experimentally and theoretically to find FTIR vibrational spectra.


Assuntos
Teoria Quântica , Análise Espectral Raman , Espectroscopia de Infravermelho com Transformada de Fourier , Modelos Moleculares , Benzimidazóis/química
9.
Heliyon ; 8(10): e10831, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36211997

RESUMO

Isopropyl 1-benzoyl-4-(benzoyloxy)-2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate (IDPC) was synthesized and characterized via spectroscopic (FT-IR and NMR) techniques. Hirshfeld surface and topological analyses were conducted to study structural and molecular properties. The energy gap (Eg), frontier orbital energies (EHOMO, ELUMO) and reactivity parameters (like chemical hardness and global hardness) were calculated using density functional theory with B3LYP/6-311++G (d,p) level of theory. Molecular docking of IDPC at the active sites of SARS-COVID receptors was investigated. IDPC molecule crystallized in the centrosymmetric triclinic ( P 1 ¯ ) space group. The topological and Hirshfeld surface analysis revealed that covalent, non-covalent and intermolecular H-bonding interactions, and electron delocalization exist in the molecular framework. Higher binding score (-6.966 kcal/mol) of IDPC at the active site of SARS-COVID main protease compared to other proteases suggests that IDPC has the potential of blocking polyprotein maturation. H-bonding and π-cationic and interactions of the phenyl ring and carbonyl oxygen of the ligand indicate the effective inhibiting potential of the compound against the virus.

10.
Biomolecules ; 12(8)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36008987

RESUMO

Piperidine pharmacophore-containing compounds have demonstrated therapeutic efficacy against a range of diseases and are now being investigated in cancer. A series of 3-chloro-3-methyl-2,6-diarylpiperidin-4-ones, compounds (I-V) were designed and synthesized for their evaluation as a potential anti-cancer agent. Compounds II and IV reduced the growth of numerous hematological cancer cell lines while simultaneously increasing the mRNA expression of apoptosis-promoting genes, p53 and Bax. Molecular docking analyses confirmed that compounds can bind to 6FS1, 6FSO (myeloma), 6TJU (leukemia), 5N21, and 1OLL (NKTL). Computational ADMET research confirmed the essential physicochemical, pharmacokinetic, and drug-like characteristics of compounds (I-V). The results revealed that these compounds interact efficiently with active site residues and that compounds (II) and (V) can be further evaluated as potential therapeutic candidates.


Assuntos
Antineoplásicos , Antineoplásicos/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
11.
Polymers (Basel) ; 14(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893964

RESUMO

Soda lignin is a by-product of the soda process for producing cellulose from grassy raw materials. Since a method for the industrial processing of lignin of this type is still lacking, several research teams have been working on solving this problem. We first propose a modification of soda lignin with sulfamic acid over solid catalysts. As solid catalysts for lignin sulfation, modified carbon catalysts (with acid sites) and titanium and aluminum oxides have been used. In the elemental analysis, it is shown that the maximum sulfur content (16.5 wt%) was obtained with the Sibunit-4® catalyst oxidized at 400 °C. The incorporation of a sulfate group has been proven by the elemental analysis and Fourier-transform infrared spectroscopy. The molecular weight distribution has been examined by gel permeation chromatography. It has been demonstrated that the solid catalysts used in the sulfation process causes hydrolysis reactions and reduces the molecular weight and polydispersity index. It has been established by the thermal analysis that sulfated lignin is thermally stabile at temperatures of up to 200 °C. According to the atomic force microscopy data, the surface of the investigated film consists of particles with an average size of 50 nm. The characteristics of the initial and sulfated ß-O-4 lignin model compounds have been calculated and recorded using the density functional theory.

12.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163526

RESUMO

Betulin is an important triterpenoid substance isolated from birch bark, which, together with its sulfates, exhibits important bioactive properties. We report on a newly developed method of betulin sulfation with sulfamic acid in pyridine in the presence of an Amberlyst®15 solid acid catalyst. It has been shown that this catalyst remains stable when being repeatedly (up to four cycles) used and ensures obtaining of sulfated betulin with a sulfur content of ~10%. The introduction of the sulfate group into the betulin molecule has been proven by Fourier-transform infrared, ultraviolet-visible, and nuclear magnetic resonance spectroscopy. The Fourier-transform infrared (FTIR) spectra contain absorption bands at 1249 and 835-841 cm-1; in the UV spectra, the peak intensity decreases; and, in the nuclear magnetic resonance (NMR) spectra, of betulin disulfate, carbons С3 and С28 are completely shifted to the weak-field region (to 88.21 and 67.32 ppm, respectively) with respect to betulin. Using the potentiometric titration method, the product of acidity constants K1 and K2 of a solution of the betulin disulfate H+ form has been found to be 3.86 × 10-6 ± 0.004. It has been demonstrated by the thermal analysis that betulin and the betulin disulfate sodium salt are stable at temperatures of up to 240 and 220 °C, respectively. The density functional theory method has been used to obtain data on the most stable conformations, molecular electrostatic potential, frontier molecular orbitals, and mulliken atomic charges of betulin and betulin disulfate and to calculate the spectral characteristics of initial and sulfated betulin, which agree well with the experimental data.


Assuntos
Ácidos Sulfônicos/química , Triterpenos/química , Catálise , Teoria da Densidade Funcional , Conformação Molecular , Estrutura Molecular , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
13.
Molecules ; 27(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35011498

RESUMO

Spruce (Piceaabies) wood hemicelluloses have been obtained by the noncatalytic and catalytic oxidative delignification in the acetic acid-water-hydrogen peroxide medium in a processing time of 3-4 h and temperatures of 90-100 °C. In the catalytic process, the H2SO4, MnSO4, TiO2, and (NH4)6Mo7O24 catalysts have been used. A polysaccharide yield of up to 11.7 wt% has been found. The hemicellulose composition and structure have been studied by a complex of physicochemical methods, including gas and gel permeation chromatography, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The galactose:mannose:glucose:arabinose:xylose monomeric units in a ratio of 5:3:2:1:1 have been identified in the hemicelluloses by gas chromatography. Using gel permeation chromatography, the weight average molar mass Mw of hemicelluloses has been found to attain 47,654 g/mol in noncatalytic delignification and up to 42,793 g/mol in catalytic delignification. Based on the same technique, a method for determining the α and k parameters of the Mark-Kuhn-Houwink equation for hemicelluloses has been developed; it has been established that these parameters change between 0.33-1.01 and 1.57-472.17, respectively, depending on the catalyst concentration and process temperature and time. Moreover, the FTIR spectra of the hemicellulose samples contain all the bands characteristic of heteropolysaccharides, specifically, 1069 cm-1 (C-O-C and C-O-H), 1738 cm-1 (ester C=O), 1375 cm-1 (-C-CH3), 1243 cm-1 (-C-O-), etc. It has been determined by the thermogravimetric analysis that the hemicelluloses isolated from spruce wood are resistant to heating to temperatures of up to ~100 °C and, upon further heating, start destructing at an increasing rate. The antioxidant activity of the hemicelluloses has been examined using the compounds simulating the 2,2-diphenyl-2-picrylhydrazyl free radicals.


Assuntos
Antioxidantes , Picea/química , Polissacarídeos , Antioxidantes/química , Antioxidantes/isolamento & purificação , Catálise , Temperatura Alta , Lignina/química , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Xilose/química
14.
Foods ; 10(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34828852

RESUMO

Xanthan is an important polysaccharide with many beneficial properties. Sulfated xanthan derivatives have anticoagulant and antithrombotic activity. This work proposes a new method for the synthesis of xanthan sulfates using sulfamic acid. Various N-substituted ureas have been investigated as process activators. It was found that urea has the greatest activating ability. BBD of xanthan sulfation process with sulfamic acid in 1,4-dioxane has been carried out. It was shown that the optimal conditions for the sulfation of xanthan (13.1 wt% sulfur content) are: the amount of sulfating complex per 1 g of xanthan is 3.5 mmol, temperature 90 °C, duration 2.3 h. Sulfated xanthan with the maximum sulfur content was analyzed by physicochemical methods. Thus, in the FTIR spectrum of xanthan sulfate, in comparison with the initial xanthanum, absorption bands appear at 1247 cm-1, which corresponds to the vibrations of the sulfate group. It was shown by GPC chromatography that the starting xanthan gum has a bimodal molecular weight distribution of particles, including a high molecular weight fraction with Mw > 1000 kDa and an LMW fraction with Mw < 600 kDa. It was found that the Mw of sulfated xanthan gum has a lower value (~612 kDa) in comparison with the original xanthan gum, and a narrower molecular weight distribution and is characterized by lower PD values. It was shown by thermal analysis that the main decomposition of xanthan sulfate, in contrast to the initial xanthan, occurs in two stages. The DTG curve has two pronounced peaks, with maxima at 226 and 286 °C.

15.
Heliyon ; 7(10): e08204, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34754970

RESUMO

In this research, the impact of non-covalent interactions on the FT-IR spectrum and structural, electronic, topological and vibrational properties of hybrid 4-methylbenzylammonium nitrate (4MBN) have been studied combining B3LYP/CC-PVTZ calculations with molecular docking. 4MBN was synthesized and characterized by using the FT-IR spectrum while the optimized structures in gas phase and in ethanol and aqueous solutions have evidenced monodentate coordination between the nitrate and methylbenzylammonium groups, in agreement with that experimental determined for this species by X-ray diffraction. Here, non-covalent interactions were deeply analyzed in terms of topological parameters (AIM), electron localization function (ELF), localized orbital locator (LOL), Hirshfeld surface and reduced density gradient (RDG) method. Weak interactions such as H-bonds, VDW and steric effect in 4MBN were visualized and quantified by the independent gradient density (IGM) based on the promolecular density. The hyper-conjugative and the delocalization of charge in 4MBN have been elucidated by natural bonding orbital (NBO) while its chemical reactivity was studied and discussed by using molecular electrostatic potential surface (MESP), frontier molecular orbital (FMOs), density of state (DOS) and partial density of state (PDOS). The complete vibrational assignments of 69 vibration modes expected for 4MBN are reported together with the scaled force constants while the electronic transitions were evaluated by TD-DFT calculations in ethanol solution. Thermal analysis (DTA and DSC) was also determined. Molecular docking calculations have suggested that 4MBN presents biological activity and could act as a good inhibitor against schizophrenia disease.

16.
Molecules ; 26(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34500801

RESUMO

The process of sulfation of arabinogalactan-a natural polysaccharide from Larix sibirica Ledeb.-with sulfamic acid in 1,4-dioxane using different activators has been studied for the first time. The dynamics of the molecular weight of sulfated arabinogalactan upon variation in the temperature and time of sulfation of arabinogalactan with sulfamic acid in 1,4-dioxane has been investigated. It has been found that, as the sulfation time increases from 10 to 90 min, the molecular weights of the reaction products grow due to the introduction of sulfate groups without significant destruction of the initial polymer and sulfation products. Sulfation at 95 °C for 20 min yields the products with a higher molecular weight than in the case of sulfation at 85 °C, which is related to an increase in the sulfation rate; however, during the further process occurring under these conditions, sulfation is accompanied by the destruction and the molecular weight of the sulfated polymer decreases. The numerical optimization of arabinogalactan sulfation process has been performed. It has been shown that the optimal parameters for obtaining a product with a high sulfur content are a sulfamic acid amount of 20 mmol per 1 g of arabinogalactan, a process temperature of 85 °C, and a process time of 2.5 h.


Assuntos
Galactanos/isolamento & purificação , Larix/química , Sulfatos/química , Configuração de Carboidratos , Galactanos/química , Modelos Moleculares , Peso Molecular , Temperatura
17.
ACS Omega ; 6(35): 22603-22615, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34514232

RESUMO

Sulfated cellulose derivatives are biologically active substances with anticoagulant properties. In this study, a new sulfated diethylaminoethyl (DEAE)-cellulose derivative has been obtained. The effect of a solvent on the sulfation process has been investigated. It is shown that 1,4-dioxane is the most effective solvent, which ensures the highest sulfur content in DEAE-cellulose sulfate under sulfamic acid sulfation. The processes of sulfamic acid sulfation in the presence of urea in 1,4-dioxane and in a deep eutectic solvent representing a mixture of sulfamic acid and urea have been compared. It is demonstrated that the use of 1,4-dioxane yields the sulfated product with a higher sulfur content. The obtained sulfated DEAE-cellulose derivatives have been analyzed by Fourier transform infrared spectroscopy, X-ray diffractometry, and scanning electron and atomic force microscopy, and the degree of their polymerization has been determined. The introduction of a sulfate group has been confirmed by the Fourier transform infrared spectroscopy data; the absorption bands corresponding to sulfate groups have been observed in the ranges of 1247-1256 and 809-816 cm-1. It is shown that the use of a deep eutectic solvent leads to the side carbamation reactions. Amorphization of DEAE-cellulose during sulfation has been demonstrated using X-ray diffractometry. The geometric structure of a molecule in the ground state has been calculated using the density functional theory with the B3LYP/6-31G(d, p) basis set. The reactive areas of DEAE-cellulose and its sulfated derivatives have been analyzed using molecular electrostatic potential maps. The thermodynamic parameters (heat capacity, entropy, and enthalpy) of the target sulfation products have been determined. The HOMO-LUMO energy gap, Mulliken atomic charges, and electron density topology of the title compound have been calculated within the atoms in molecule theory.

18.
Int J Biol Macromol ; 188: 333-342, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389381

RESUMO

Understanding olfaction process at a microscopic or molecular level needs more elucidation of the multiple stages involved in the olfaction mechanism. A worth full elucidation and a better understanding of this molecular mechanism, a necessary preamble should be achieved. The content of this work is a preamble for that. A study of the mouse and human olfactory receptors activation in response to two nitro musks stimuli, which are the musk xylol and the musk ketone, are considered here, first, for their wide expanded use in perfumery, but also to show some particular aspects of this process in the case of these two stimuli, which could help to deduce more details and more general aspects in the global olfactory mechanism. A statistical physics modeling using the monolayer model with two independent types of receptor binding sites of the response of the mouse olfactory receptor MOR215-1 and the human olfactory receptor OR5AN1, which are identified as specifically responding to musk compounds, is used to characterize the interaction between the two nitro musk molecules, the mouse and the human olfactory receptors and to determine the olfactory band of these two odorants through the determination of the molar adsorption energies and the adsorption energy distributions. The physico-chemical model parameters can be used for the steric characterization via the calculation of the receptor site size distributions. The docking computation between these two nitro musks and the human olfactory receptor OR5AN1 is performed demonstrating a large similarity in receptor-ligand detection process. Thus, docking finding results prove that the calculated binding affinities were belonging to the spectrum of adsorption energies.


Assuntos
Adsorção/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/genética , Receptores Odorantes/genética , Olfato/genética , Animais , Ácidos Graxos Monoinsaturados/química , Ácidos Graxos Monoinsaturados/metabolismo , Humanos , Camundongos , Modelos Químicos , Simulação de Acoplamento Molecular , Nitrocompostos/química , Nitrocompostos/farmacologia , Odorantes/análise , Física , Receptores Odorantes/química , Olfato/efeitos dos fármacos , Xilenos/química , Xilenos/farmacologia
19.
J King Saud Univ Sci ; 33(2): 101334, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33432258

RESUMO

Structure-activity relationships for hydroxychloroquine compound and its derivatives resulted in a potent antiviral activity. Where hydroxychloroquine derivatives showed an apparent efficacy against coronavirus related pneumonia. For this reason, the current study is focused on the structural properties of hydroxychloroquine and hydroxychloroquine sulfate. Optimized structures of these molecules have been reported by using DFT method at B3LYP/6-31G* level of theory. The geometric were determined and compared with the experimental crystal structure. The intra and intermolecular interactions which exist within these compounds are analyzed by different methods namely the topological analysis AIM, ELF and the reduced gradient of the density. These approaches make it possible in particular to study the properties of hydrogen bonds. The highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels are constructed and the corresponding frontier energy gaps are determined to realize the charge transfer within the molecule. The densities of state diagrams were determined to calculate contributions to the molecular orbitals. The molecular electrostatic potential surfaces are determined to give a visual representation of charge distribution of these ligands and to provide information linked to electrophilic and nucleophilic sites localization. Finally, these derivatives were evaluated for the inhibition of COVID-19 activity by using the molecular docking method.

20.
J Mol Model ; 27(1): 5, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33389146

RESUMO

The synthesis of guar gum sulfates by a complex of sulfur trioxide with 1,4-dioxane was studied. The influence of temperature, process duration, and the volume of chlorosulfonic acid on the degree of substitution of guar gum sulfates was studied. The sulfation process has been optimized using the Box-Behnken design. It was shown that the optimal conditions for sulfation of guar gum with a complex of sulfur trioxide-1.4-dioxane: temperature 60 °C, duration 2.9 h, and a volume of chlorosulfonic acid of 3.1 ml. Sulfate groups embedding into the structure of guar gum was confirmed by elemental analysis and FTIR. The initial and sulfated guar gum were also characterized by methods: X-ray diffraction, scanning electron microscopy, and gel permeation chromatography. Using X-ray diffraction, it was shown that amorphization of guar gum occurs during sulfation. Using scanning electron microscopy, it was shown that the morphology of guar gum changes in the process of sulfation. Using gel permeation chromatography, it was shown in the process of guar gum sulfation by a complex of sulfur trioxide with 1,4-dioxane, the molecular weight decreases from 600 to 176 kDa. The geometric parameters of all complexes were carried out by using the DFT/B3PW91 method with a 6-31 + G (d,p) basis set. These structures are optimized to predict the important properties of a theme. MEP with contour map has been performed to obtain the electronic properties. Frontier molecular orbital HOMO-LUMO orbital diagram has been obtained for different energy levels and their band gap energies have been computed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...